		STUDY MODULE D	ESCRIPTION FORM			
	f the module/subject Inical Electrodyn	amics		Code 1010324381010304777		
Field of			Profile of study	Year /Semester		
Electrical Engineering			(general academic, practical) general academic	4/8		
Elective path/specialty			Subject offered in:	Course (compulsory, elective)		
	-	ssor Control Systems in	Polish	obligatory		
Cycle of			Form of study (full-time,part-time)			
	-	le studies	part-time			
No. of h	•			No. of credits		
Lectur	0140000	1		- 3		
Status c	-	program (Basic, major, other) basic	(university-wide, from another fi	o m field		
Educatio	on areas and fields of scie	ECTS distribution (number and %)				
techr	nical sciences			3 100%		
	Technical scie	3 100%				
Deen				4 / Jan 2 4		
-	onsible for subje		Responsible for subject			
	nż. Rafał M. Wojciecho ail: rafal.wojcieiechows		Prof. dr hab inż. Andrzej De email: andrzej.demenko@p			
	48 061 665 23 96		tel. 48 061 665 21 26	ul.poznan.pr		
Elec	trical Engineering		Electrical Engineering			
ul. F	Piotrowo 3a, 60-965 Po	oznań	ul. Piotrowo 3a, 60-965 Poz	nań		
Prere	quisites in term	s of knowledge, skills an	d social competencies:			
1	Knowledge	Elementary knowledge of electri machines and numerical method		c field theory, electrical		
2	Skills	The skill of effective self-educati make a right decisions to solve field, the ability to use Windows	simple problems related to the th			
3	Social competencies	Student is aware of the widening the ability to comply with the rule				
Assu	•	ectives of the course:				
The stu	udent should obtain kn	nowledge of the description and an ement method in electromagnetis		omena in electrical devices as		
	Study outco	mes and reference to the	educational results for	a field of study		
Know	/ledge:					
1. The	student has a basic ki	nowledge of technical electrodyna	mics - [K_W02++; K_W06+++]			
	student has structured ucers - [K_W02+++; K	d knowledge of numerical method _W06+++; K_W12+]	s and software for the numerica	calculation of electromagnetic		
Skills	:					
	student will be able to magnetic field - [K_U	use known methods and models 10++; K_U11+++]	for field analysis and synthesis	of simple systems with the		
		prepare a report on the numerica using professional software - [K		cal transducers and systems		
Socia	al competencies:					
	student is aware of the [K_K03++]	e value of his work, respect the pr	inciples of teamwork, takes resp	ponsibility for collaborative		
		tify the problem and choose the c	correct way to solve the subject	of electrodynamics - [K_K06++]		
		Assessment metho	ds of study outcomes			

Lecture:

-assessment of knowledge and skills by the completion of a written test (solving problem), -continuous evaluation for each course (rewarding activity and quality of the expression).

Laboratory:

- end test and favoring the knowledge necessary to complete tasks during laboratory,

- continuous evaluation for each course rewarding gain skills,
- assessment of skills related to the practical implementation of lecture knowledge to solve laboratory tasks,
- evaluation of the reports from performed exercise.

Extra points for the activity in the classroom, and in particular for:

-discussion and proposition of additional aspects of the subjects,

-effectiveness of the application of the knowledge gained during solving the given problem,

-ability to work within a team, which performs the task detailed at the laboratory,

-quality and diligence of the developed reports.

Course description

The field approach in the description of electromagnetic phenomena. Differential, integral and circuit forms of electromagnetic field equations. Boundary conditions. Two dimensional (2D) fields. Methods of electromagnetic field analysis, field and potential formulations. Integral and finite difference methods of 2D electro and magnetostatic field analysis. Finite element method. Network models of systems with magnetic and electric field. Inducted currents. Electromagnetic shields. Field method of electromagnetic torques and forces calculation. Updated 2017: Methods describing the filamentary winding electrical machines using the electric potential vector T0. Electromagnetic levitation. Equations of 2D transient field. Numerical methods of solving diffusion equation. Implicit and explicit schemes, Crank-Nicholson method. Professional software for electromagnetic field analysis in electrical devices. The applied methods of education: lectures - presentation of issues using multimedia resources, discussion of problematic tasks; laboratory - implementation of simulation and laboratory tests of electromagnetic fields.

Basic bibliography:

1. Mazur D., Gołębiowski M., Rudy M., Modelowanie i analiza układów elektromechanicznych metodą elementów skończonych, Oficyna Wydawnicza Politechniki Rzeszowskiej, 2016

2. Michalski W., Podstawy teorii pola elektromagnetycznego. Statyczne pola elektryczne i magnetyczne, Oficyna Wydawnicza Politechniki Wrocławskiej, 2013

3. Feynman L. S., Feynmana wykłady z fizyki. Elektrodynamika, fizyka ośrodków ciągłych, t. 2.2, PWN Warszawa 2012

4. Brzezowska J., Gajewski A., Wprowadzenie do elektrodynamiki klasycznej, WPK, Kraków, 2010

5. Demenko A., Obwodowe modele układów z polem elektromagnetycznym, WPP, Poznań, 2004

6. Bastos J., Sadowski J., Electromagnetic Modeling by Finite Element Methods, Marsel Dekker Inc., 2003

7. Nowak L., Modele polowe przetworników elektromechanicznych w stanach nieustalonych, WPP, Poznań, 1999

8. Bossavit A., Computational electromagnetism, variational formulations, complementarity, edge element method, Academic Press Limited, London, 1998

9. Demenko A., Symulacja dynamicznych stanów pracy maszyn elektrycznych w ujęciu polowym, WPP, Poznań, 1997

10. Turowski J., Elektrodynamika techniczna, Wyd.II, WNT, Warszawa, 1993

Additional bibliography:

1. Jian-Ming J., Theory and Computation of Electromagnetic Fields, John Wiley and Sons, 2010

2. Sikora J., Numeryczne metody rozwiązywania zagadnień brzegowych, WUPL., Lublin 2009

3. Dolezel I., Karban P., Solin P., Integral methods in low-frequency electromagnetics, Wiley and Son, New Jersey, 2009

4. Binns K., Lawrenson P., Trowbridge C., The analytical and numerical solution of electric and magnetic fields, John Wiley and Sons, 1992

Result of average student's workload

Activity	Time (working hours)			
1. Lectures	8			
2. Laboratories	13			
3. Participate in the consultations on the lecture	5			
4. Participate in the consultations on the laboratories	12			
5. Preparation for laboratory	8			
6. Homework preparation	22			
Student's workload				

Source of workload	hours	ECTS
Total workload	68	3
Contact hours	38	1
Practical activities	43	1